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Abstract. We extend Witten’s supersymmetry (SUSY) formulation for Hamiltonian systems to a
system of annihilation operator eigenvalue equations associated with the SUSY isotonic oscillator,
which, as we show, define SUSY canonical supercoherent states containing mixtures of both pure
bosonic and pure fermionic counterparts. Specifically, a graded Lie algebra structure analogous
to Witten’s SUSY quantum mechanical algebra is realized in which only annihilation operators
participate, all expressed in terms of the Wigner annihilation operator of a related super-Wigner
oscillator system.

1. Introduction

As is well known, the quantum mechanical (QM)N = 2 supersymmetry (SUSY) algebra of
Witten [1,2]

Hss = {Q−,Q+} (Q−)2 = (Q+)
2 = 0→ [Hss,Q∓] = 0 (1)

involves† bosonic and fermionic sector Hamiltonians of the SUSY HamiltonianHss (the even
element), which get intertwined through the nilpotent charge operatorsQ− = (Q+)

† (the odd
elements).

The extension of coherent states (CS) to super and SUSY systems has always attracted
attention with applications for the usual QMSUSY oscillator as, for example, via the SUSY
annihilation operator supercoherent states (SCS) definition by Aragone and Zypman [3] or
the supergroup extension by Fatyagaet al [4] of the displacement operator definition of
Perelomov CS [5] and studies by Balantekin, Schmitt and Barrett [6] for the supergroup
Osp(1/2N,R). However, the possibilities of a direct SUSY formulationà la Witten also for
the SCS presumably associated with SUSY Hamiltonian systems (1) do not, to our knowledge,
seem to have been reported so far. In this paper we show how this aim can be accomplished
for the SUSY annihilation operator or canonical supercoherents states (CSCS) associated with
a SUSY isotonic oscillator (harmonic plus a centripetal barrier) system.

† The anti-commutator ofA andB is defined by{A,B} ≡ AB +BA, and the commutator ofA andB is defined by
[A,B] ≡ AB − BA.

0305-4470/99/386643+10$30.00 © 1999 IOP Publishing Ltd 6643



6644 J Jayaraman et al

An influential work on representations and properties of a Wigner quantized [7] para-
Bose oscillator CS is by Sharma, Mehta, Mukunda and Sudarshan [8] who, however, have
concentrated their application to a purely Schrödinger description of these CS. Apart from
the works in [8], parabosons of even and odd orders as irreducible constituents of the Fock
space associated with Green’s ansatz of two and three terms were also comprehensively studied
by Macfarlane [9]. We extend the connection between the SUSY isotonic and super-Wigner
oscillator Hamiltonian systems, pointed out recently by Jayaraman and Rodrigues [10], beyond
the Hamiltonian level to the regime of the annihilation operators associated with these systems
and show that a SUSY version for the isotonic CSCS can indeed be formulated.

The super-realization [10] of the Wigner-generalized oscillator has algebraic utilities for
easier spectral resolutions of varied oscillator-related potentials [11]. It also has immediate
potential applications for any full isotropicD-dimensional physical oscillator system [10]
in its spherical version and has also attracted attention in quantum defect studies [12]. We
therefore deem the present SUSY formulation of isotonic oscillator CSCS useful for possible
extensions via the Wigner connection to SCS associated with other oscillator-related SUSY
systems. Results of such investigations and the pursuit of current encouraging indications
for extending the present formalism to SCS associated with other SUSY shape-invariant
Hamiltonian systems [13] will be reported separately.

In the next section we realize a graded Lie algebra structure analogous to Witten’s
QMSUSY algebra for a system of annihilation operator eigenvalue equations associated with
the SUSY isotonic oscillator. In section 3 we deduce the normalization, (non-)orthogonality
and completeness relations for the SUSY CSCS and sharpen out the SUSY interwining relations
between their bosonic and fermionic components. Finally, the constructions of position–
momentum minimum uncertainty states as associated with the Wigner annihilation operator
SCS and the SUSY annihilation operator SCS are briefly considered in section 4. In section 5
concluding remarks are given.

2. The graded Lie algebra structure

The connection between the SUSY isotonic HamiltonianHss with unbroken SUSY and its
charge operatorsQ∓with the super-Wigner HamiltonianH(`+1) ≡ H and its ladder operators
a−(` + 1) ≡ a− = (a+)†, ` + 1> 0 being the Wigner parameter, is given by [10]:

Hss =
(
H−ss 0
0 H +

ss

)
= H − 1

2{63 + 2(` + 1)} (2)

H−ss = H−(`)− (` + 3
2) H +(`)≡H−(` + 1) (3)

H =
(
H−(`) = 1

2

{
− d2

dx2 + x2 + `(`+1)
x2

}
0

0 H +(`)

)
(4)

Q− = (Q+)
† = 1

2(1−63)a
− = 6−A− (5)

a− = 1√
2
61

{
− d

dx
+

1

x
(` + 1)63− x

}
(6)

A− ≡ A−(` + 1) = 1√
2

{
− d

dx
+

1

x
(` + 1)− x

}
= (A+)† (7)

(6−)2 = (6+)
2 = 0 {6−, 6+} = 1 6−6+ = Nf (8)

where the fermionic coordinates are represented by6+ = 1
2(61 + i62) and6− = 1

2(61− i62)

with the usual Pauli matrix representation forE6 and withNf = 1
2(1−63) being the fermion

number operator. (We work with a natural system of units and takeω = 1.)
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While the QMSUSY algebra (1) is realized with the bosonic and fermionic sector
HamiltoniansH−ss andH +

ss of Hss of (2) given by

H−ss = A+A− H +
ss = A−A+ (9)

Q− =
(

0 0
A− 0

)
= (Q+)

† (10)

the Wigner–Heisenberg (WH) algebra is realized by

H = 1
2{a−, a+} (11)

[H, a−] = −a− [H, a+] = a+ (12)

[a−, a+] = 1 + 2(` + 1)63 62
3 = 1 (13)

{63, a
−} = 0 {63, a

+} = 0→ [63, H ] = 0. (14)

From (2), (4), (12) and (14) it follows thatA−ss = (a−)2 is the SUSY annihilation operator, i.e.
the annihilation operator for the unbroken SUSY spectrum ofHss :

[Hss, A
−
ss ] = −2A−ss A−ss = (a−)2. (15)

The isotonic SCS|α; ` + 1〉ss ≡ |α〉ss , α being a complex number, are then defined here
as the eigenstates ofA−ss (following a convention as set in [3]):

A−ss |α〉ss = α|α〉ss (16)

A−ss =
(
B− ≡ B−(`) 0

0 B+ ≡ B+(`)

)
(17)

|α〉ss =
( |α〉− ≡ |α; `〉−
|α〉+ ≡ |α; `〉+

)
. (18)

That |α〉ss are supersymmetric, true to the subscript notation employed, can now be easily
proved.

On 1
2(1 +63) and 1

2(1− 63) projections, equations (16) and (15) decouple, in view of
(2), (17) and (18), respectively, into

B−|α〉− = α−|α〉− B+|α〉+ = α+|α〉+ (19)

[H−ss , B
−] = −2B− [H +

ss , B
+] = −2B+ (20)

whereB∓ are given by

B− = Ã−A− (21)

B+ = A−Ã− (B+ = B−(` + 1)) (22)

B− = 1

2

{
d2

dx2
+ 2x

d

dx
+ x2 − `(` + 1)

x2
+ 1

}
(23)

Ã− ≡ A−{−(` + 1)} = 1√
2

{
− d

dx
−` + 1

x
− x

}
= (Ã+)†. (24)

Equations (19), (21) and (22) imply that|α〉∓ get interwined in a SUSY-like manner:

|α〉− = C−Ã−|α〉+ (25)

|α〉+ = C+A
−|α〉− (26)

C− = {+ <α|H +
ss |α >+ +2` + 1}− 1

2 C+ = {− <α|H−ss |α >−}−
1
2 (27)

where the constantsC∓ have been determined from normalizations on|α〉∓ and the easily
verifiable relation

H̃−ss = Ã+Ã− = H +
ss + 2` + 1 H̃ +

ss = Ã−Ã+ = H−ss + 2` + 3 (28)
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together with (9). Note that̃Hss exhibits broken SUSY.
The graded Lie algebraic structure then readily follows withA−ss as the even element and

with Q− of (5) or (10) and

Q̃− = 1
2(1 +63)a

− =
(

0 Ã−

0 0

)
(29)

as the odd elements:

A−ss = {Q−, Q̃−} (Q−)2 = (Q̃−)2 = 0
→ [A−ss ,Q−] = [A−ss , Q̃−] = 0

(30)

which is analogous to that of the QMSUSY algebra (equation (1)) of Witten for Hamiltonian
systems but with the participation here only by annihilation operators, all expressed in
terms of the super Wigner annihilation operatora−. In terms ofa− = Q− + Q̃− and
i63a

− = i(Q̃−−Q−), an equivalent graded Lie algebraic structure to that in (30) also results:

A−ss = (a−)2 = (i63a
−)2 {a−, i63a

−} = 0 (31)

which is analogous to the structure

Hss = Q2
1 = Q2

2 {Q1,Q2} = 0 (32)

equivalent to (1) withQ1 = Q− +Q+ andQ2 = i(Q+ −Q−).
Equations (15)–(24) also imply that the annihilation operatorsB∓ of respectively the

bosonic and fermionic sector HamiltoniansH∓ss ofHss are indeed theSUSY partnerannihilation
operators of the SUSY annihilation operatorA−ss ofHss , pertaining respectively to the bosonic
((B) with Nf = 0) and fermionic ((F ) with Nf = 1) sectors ofA−ss with their proper
eigenstates|α〉− and |α〉+, intertwined as in (25)–(27), being respectively the bosonic and
fermionic components of|α〉ss :
|α〉ss = |α〉B + |α〉F |α〉B ≡ |α; ` + 1>B |α >F≡ |α; ` + 1>F (33)

|α〉B =
( |α >−

0

)
|α〉F =

(
0
|α〉+

)
. (34)

Thus|α〉ss are supersymmetric CSCS containing mixtures of purely bosonic|α〉B and purely
fermionic|α〉F counterparts.

3. The completeness of SUSY CSCS

The explicit expressions for|α〉− and|α〉+,

|α〉− =
∞∑
m=0

b−m|m〉− |α〉+ =
∞∑
m=0

b+
m|m〉+ (35)

H−ss |m〉− = ε(m)ss;−|m〉− H +
ss |m〉+ = ε(m)ss;+|m〉+ (36)

in terms of the complete orthonormal set of eigenstates|m〉−(≡ |m̃〉+) and|m〉+(≡ |m̃〉−) of
H−ss (H̃

+
ss) andH +

ss(H̃
−
ss ) for the energiesε(m)ss;−(ε̃

(m)

ss;+) andε(m)ss;+(ε̃
(m)

ss;−) can be determined with
the use of the SUSY interwining relations:

|m + 1〉− = 1√
ε
(m)

ss;+
A+|m〉+ |m〉+ = 1√

ε
(m+1)
ss;−

A−|m + 1〉− (37)

|m̃〉− = 1√
ε̃
(m)

ss;+
Ã+|m̃〉+ |m̃〉+ = 1√

ε̃
(m)

ss;−
Ã−|m̃〉− (38)
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ε
(m)

ss;− ≡ ε(m)ss;−(`) = 2m ε
(m)

ss;+ ≡ ε(m)ss;+(`) = ε(m+1)
ss;−

ε̃
(m)

ss;− = ε(m)ss;+ + 2` + 1= ε̃(m)ss;+
ε̃
(m)

ss;+ = ε(m)ss;− + 2` + 3= ε̃(m)ss;− (m = 0, 1, . . .).

(39)

First, from (21), (22) and (37)–(39) one derives that

B∓|m〉∓ =
√

2m(2m + 2` + 2∓ 1)|m− 1〉∓ (40)

(B∓)†|m〉∓ =
√

2(m + 1)(2m + 2` + 4∓ 1)|m + 1〉∓ (41)

and hence that

|m〉∓ =
{

0(` + 2∓ 1
2)

22mm!0(` + 2∓ 1
2 +m)

} 1
2

[(B∓)†]m|0〉∓. (42)

Insertion then of (40) and (35) into (19) leads to the recursion relation

b∓m =
α

2

{
m

(
m + ` + 1∓ 1

2

)}− 1
2

b∓m−1 (43)

and thereby to a straightforward determination of the normalized|α〉∓:

|α〉∓ = (g∓)− 1
2

∞∑
m=0

1

{m!0(m + ` + 2∓ 1
2)}

1
2

(α
2

)m
|m〉∓ (44)

g∓ ≡ g∓(|α|) =
(

2

|α|
)̀ +1∓ 1

2

I`+1∓ 1
2
(|α|) =

∞∑
m=0

1

m!0(m + ` + 2∓ 1
2)

( |α|
2

)2m

(45)

= 0(` + 2∓ 1
2)
−1

0F1

(
` + 2∓ 1

2
; |α|

2

4

)
(46)

∓〈ξ ; `|α; `〉∓ = {g∓(|α|)g∓(|ξ |)}− 1
2g∓[(ξ ∗α)

1
2 ]. (47)

In the above,0 represents the familiar Gamma function,Ik denotes the first modified Bessel
function of thekth order [14] and0F1 is the doubly confluent hypergeometric function.
Equation (47) expresses the non-orthogonality relation for|α〉∓.

By virtue of (42) and (46), the expression (44) for|α〉∓ can be put in the form

|α〉∓ =
{

0F 1

(
` + 2∓ 1

2
; |α|

4

2)}− 1
2

0F1

(
` + 2∓ 1

2
;α (B

∓)†

4

)
|0〉∓ (48)

which is reminiscent of thedisplacement operatordefinition for the usual oscillator coherent
states. Note in (48) that|0 >∓= |m = 0〉∓ = |α = 0〉∓ which means that the ground states
are members of the sets of coherent states obtained via equation (48).

The procedure for determining the positive definite integration measureµ̄∓(α) entering
into the completeness relation

1

2π

∫
|α〉∓ ∓〈α|µ̄∓(α) d2α =

∞∑
m=0

|m〉∓ ∓〈m| = 1 (49)

leads to a moment problem [8,15] already familiar in the theory of para-Bose oscillator CS [8]:∫ ∞
0
g−1
∓ µ∓(|α|)(|α|)2m+1 d|α| = 22mm!0(m + ` + 2∓ 1

2) µ̄∓(α) = µ∓(|α|) (50)

and can be solved [8] by invoking the equality∫ ∞
0
Kν(|α|)(|α|)λ d|α| = 2λ−10

(
λ + ν + 1

2

)
0

(
λ− ν + 1

2

)
(51)
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(Gradshteyn and Ryzhik [16]). In fact, with the correspondence ofλ = 2m + ` + 2∓ 1
2 and

ν = ` + 1∓ 1
2 one obtains that

µ̄∓(α) = µ∓(|α|) ≡ µ∓ = I`+1∓ 1
2
(|α|)K`+1∓ 1

2
(|α|) (52)

whereKk denotes the second modified Bessel function of thekth order [14].
The states|α〉∓ are also incidentally the ordinary CCS associated with the individual

isotonic oscillator HamiltoniansH∓(`) of (4). Thus our SUSY fomulation of isotonic SCS
has yielded their constructions in a SUSY way, satisfying normalization, non-orthogonality and
completeness relations as derived here. The completeness property of the SUSY CSCS|α〉ss of
(33) and (34) results then from that of its bosonic and fermionic components in equations (49)
and (52):

I (2× 2) = 1

2π

∫
{|α〉B B〈α|µ− + |α〉F F 〈α|µ+} d2α (53)

= 1

2π

∫
{ 12(1 +63)|α〉ss ss〈α| 12(1 +63)µ−

+1
2(1−63)|α〉ss ss〈α| 12(1−63)µ+} d2α (54)

F 〈ξ ; ` + 1|α; ` + 1〉B = 0. (55)

Also, by virtue of the forms (10) and (29) forQ− andQ̃−, the graded structure (30), the
SUSY intertwining Hamiltonian eigenstates relations (37)–(39) and the explicit expressions
derived for|α〉∓ in (44)–(46), the SUSY intertwining relations (25)–(27) for the bosonic and
fermionic components|α〉∓ can be sharpened into the following suggestive forms:

Q−|α〉B = α√
2

{
g+

g−

} 1
2

|α〉F Q̃−|α〉F =
√

2

{
g−
g+

} 1
2

|α〉B. (56)

Relations in (56) together with the use of (10) and (29) forQ− andQ̃− also lead to the
normalized eigenstates| + z; ` + 1〉W ≡ | + z〉W, | − z; ` + 1〉W ≡ | − z〉W, z = √α, of the
super Wigner annihilation operator,

a| ± z〉W = ±z| ± z〉W W〈±z| ± z〉W = 1 (57)

which obtain their explicit forms as the special superpositions:

| ± z〉W = 1

(g− + |α|2 g+)
1
2

{
(g−)

1
2 |α〉B ± z√

2
(g+)

1
2 |α〉F

} √
α = z. (58)

The completeness property of|+ z〉W and| − z〉W follows from that for the SUSY CSCS|α〉ss
(equations (53), (54)), and the resolution of this identity relation easily expressible in terms of
| − z〉W and| + z〉W through the use of (58) will then contain, as well as the diagonal entries
|z〉W W〈z|, off-diagonal entries|z〉W W〈−z| for the non-vanishing value, as assumed here, of
the Wigner parameter̀+ 1:

1

π2`+
1
2

∫
{|z〉W(+) W(+)〈z|K`+ 1

2
+ |z〉W(−) W(−)〈z|K`+ 3

2
}
{
g− +

|z|2
2
g+

}
|z|2`+3 d2z = I (2× 2)

Kk ≡ Kk(|z|2) (59)

|z〉W(+) = 1
2(|z〉W + | − z〉W) |z〉W(−) = 1

2(|z〉W − | − z〉W). (60)

The fact that whenz covers the complex plane once,α covers it twice has been accounted for
in the above completeness relation. The feature of off-diagonal entries in the identity operator
(59) governed here by a SUSY formulation of CSCS corresponds, in fact, to the SUSY version
of a similar feature for para-Bose CS first discussed by Sharmaet al [8], applied by them to
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a purely Schr̈odinger description of CS. It may be noted that| ± z〉W are not eigenstates of
i63a

− owing to the graded structure (31):

i63a
−| + z〉W = iz63| + z〉W = iz| − z〉W

i63a
−| − z〉W = −iz63| − z〉W = −iz| + z〉W.

(61)

4. The minimum uncertainty SCS

To complete our analysis, we trace below the construction of minimum uncertainty coherent
states (MUCS) for the Wigner position̂x and momentum̂p defined by

√
2a∓ = (∓ip̂ − x̂) (62)

→ x̂ = 61x p̂ = 61

{
−i

d

dx
+

i

x
(` + 1)63

}
(63)

which satisfy the super generalized quantum commutation relation

[x̂, p̂] = i{1 + 2(` + 1)63} (64)

by virtue of (13). Developing the usual procedure for the construction of minimum uncertainty
states|ψ〉M with equal dispersions for position and momentum, one has

a−|ψ〉M = z|ψ〉M z = √α = − 1√
2
(〈x̂〉 + i〈p̂〉) (65)

which identifies, in view of (57) and (58), that|ψ〉M = |z〉W are a particular set of SUSY
CSCS, being eigenstates ofA−ss and as wella−.

The entire class of SUSY CSCS defined by (16) can still be associated with minimum
uncertainty SCS but only with new definitions of the positionX̂ and momentumP̂ whose
expressions then stemnaturally from those for the SUSY annihilation and creation operators
A−ss(= {A+

ss}†) analogously to the way thatx̂ andp̂ were defined in (62):

A∓ss =
1√
2
(∓iP̂ − X̂) (66)

→ X̂ = 2
√

2(x2 −Hss) P̂ = i
√

2

(
x

d

dx
+

1

2

)
(67)

→ [X̂, P̂ ] = 4iH = 4i{Hss + 1
2[63 + 2(` + 1)]}. (68)

Then, the procedure for the construction of the minimum uncertainty states|9〉M with equal
dispersions forX̂ andP̂ leads to

A−ss |9〉M = α|9〉M α = − 1√
2
(〈X̂〉 + i〈P̂ 〉) (69)

which identifies, in view of (16), that|9〉M = |α〉ss are indeed the SUSY CSCS. It may be
observed that thêX andP̂ operators obtained in the SUSY way in (66)–(68) coincide with
thenatural quantum operators used by Nieto [17] on projections respectively to the bosonic
and fermionic sectors ofA∓ss . For this reason, the bosonic and fermionic components|α >∓,
equations (44)–(48), also coincide with the MUCS of Nieto [17] employing hisnaturalclassical
to quantum variables method for the oscillator with centripetal barrier.

In figures 1 and 2 we plot the minimum uncertainty CSCS(1X̂)(1P̂ ) and the expectation
value〈X̂2〉 as a function ofα for ` = 1. However, the minimum uncertainty(1x̂)(1p̂) for
the Wigner oscillator CS, we find, is a constant.
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Figure 1. The minimum uncertainty(1X̂)(1P̂ ) of CSCS, as a function ofα, for the particular
case of̀ = 1. In this figureMUR ≡ 1X̂1P̂ , Re ≡ Re(α) and Im ≡ Im (α).

Figure 2. The expectation value〈X̂2〉 in the CSCS, as a function ofα for the particular case of
` = 1. In this figureEV ≡ 〈X̂2〉,Re ≡ Re(α) and Im ≡ Im (α). The behaviour of〈P̂ 2〉 is
similar.

The introduction of new position and momentum operators establishing a connection
between the new and canonical CS is not only a characteristic of the systems with a WH
algebra [17,18].

From (45) we obtain the following expression forg−(|α|):

g− = g−(|α|; ` = 1) = 4|α| cosh(|α|)− 4 sinh(|α|)√
π |α|3 (70)
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for ` = 1, which is divergent as|α| → ∞. In this case, from (44) and (45) we see that as
` = 1 the asymptotic behaviour of the CSCS is null.

5. Concluding remarks

In this work, the interesting general question as to the possibility of a direct SUSY formulation
à la Witten for the SCS possibly associated with the SUSY Hamiltonian systems has been
raised and answered affirmatively for the particular case of the CSCS associated with a SUSY
isotonic oscillator (harmonic plus a centripetal barrier) system. The existence of a graded
algebraic structure akin to the QMSUSY algebra but now governing a system of annihilation
operator eigenvalue equations associated with the SUSY isotonic oscillator has been a new
output, in which analysis the super Wigner oscillator connection has been an essential input.
The scenario of SUSY partner annihilation operators of the SUSY annihilation operator then
emerged naturally for this system. The SUSY features of two SUSY isotonic Hamiltonians that
were defined in the theory, one with unbroken SUSY and the other with broken SUSY, have
been exploited to deduce the explicit expressions for the bosonic and fermionic components
of the associated SUSY CSCS, individually satisfying normalization, non-orthogonality and
completeness relations and together getting SUSY-intertwined by the charge operators of the
new SUSY algebra of annihilation operators only. In [19], coherent states of the isotonic
oscillator have been studied in the framework of the generalized quantum conditions.

Although we have mainly treated a SUSY formulation of the SUSY isotonic oscillator
CSCS, similar results can be adequately extracted for any physicalD-dimensional radial
SUSY oscillator system by the Hermitian replacement of−i d

dx → −i( d
dr + D−1

2r ) and of the
Wigner parameter̀ + 1→ `D + 1

2(D − 1) where`D(`D = 0, 1, 2, . . .) is theD-dimensional
oscillator angular momentum. Also, the present formalism suggests guidelines for SUSY
extension to SCS associated with other SUSY systems such as that of the Coulomb problem
and the P̈oschl–Teller potentials via the Wigner connection as these potentials are intrinsically
oscillator-connected [10]. The subject of supersqueezed states is also being developed [20]. In
fact, the relaxation of equal dispersion conditions on the Wigner positionx̂ and momentum̂p
will include a description of isotonic canonical supersqueezed states as the minimum product
uncertainty states which, as will be published elsewhere, also admit a SUSY formulation
analogous to the present one for the SUSY CSCS. Studies on inter-connections of SUSY CSCS
with SCS emanating from other definitions such as the supergroup extended displacement
operator one [4] will also be pursued.
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